翻訳と辞書
Words near each other
・ Inner light
・ Inner limiting membrane
・ Inner Line
・ Inner Line Permit
・ Inner Little Goose Island
・ Inner London
・ Inner London Crown Court
・ Inner London Education Authority
・ Inner London Education Authority election, 1986
・ Inner London Probation Service
・ Inner loop
・ Inner loop (disambiguation)
・ Inner Loop (Rochester)
・ Inner Loop (Washington, D.C.)
・ Inner Manipur (Lok Sabha constituency)
Inner measure
・ Inner membrane
・ Inner Mind Mystique
・ Inner mission
・ Inner mitochondrial membrane
・ Inner model
・ Inner model theory
・ Inner Mongolia
・ Inner Mongolia Agricultural University
・ Inner Mongolia College of Farming and Animal Husbandry
・ Inner Mongolia Education Press
・ Inner Mongolia Medical University
・ Inner Mongolia Museum
・ Inner Mongolia Normal University
・ Inner Mongolia People's Publishing House


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Inner measure : ウィキペディア英語版
Inner measure
In mathematics, in particular in measure theory, an inner measure is a function on the set of all subsets of a given set, with values in the extended real numbers, satisfying some technical conditions. Intuitively, the inner measure of a set is a lower bound of the size of that set.
== Definition ==

An inner measure is a function
:\varphi: 2^X \rightarrow (\infty ),
defined on all subsets of a set ''X'', that satisfies the following conditions:
*Null empty set: The empty set has zero inner measure (''see also: measure zero'').
:: \varphi(\varnothing) = 0
* Superadditive: For any disjoint sets A and B,
:: \varphi( A \cup B) \geq \varphi(A) + \varphi( B ).
* Limits of decreasing towers: For any sequence of sets such that A_j \supseteq A_ for each ''j'' and \varphi(A_1) < \infty
:: \varphi \left(\bigcap_^\infty A_j\right) = \lim_ \varphi(A_j)
* Infinity must be approached: If \varphi(A) = \infty for a set A then for every positive number c, there exists a B which is a subset of A such that,
:: c \leq \varphi( B) <\infty

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Inner measure」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.